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Background Information:  Workshop Topic 2.3 

Dose-Response Data:  Are There Options for Dealing with Limited Data? 

 

Brainstorming Session  

Are There Strategies/Techniques Used for Non-Nutrient Substances 

That May be Useful in Approximating Dose-Response Relationships  

for Nutrients? 
 

 

OVERVIEW 

 

One of the key aspects of the development of Dietary Reference Intake (DRI) values is 

the determination of the relationship between the level of intake of a nutrient substance 

and the advent of the “response” of interest, generally either (i) a sign of deficiency or 

increased risk of a chronic disease, or (ii) an adverse or toxic effect.  In short, the goal is 

to ascertain the “dose-response curve” that reflects the levels of intake at which 

undesirable conditions occur.  With this information, DRI study panels can move on to 

specify Estimated Average Requirements and Tolerable Upper Intake Levels. One unique 

aspect of nutrition versus non-nutrient assessment of exposures is that either too little or 

too much exposure may be cause harm.  Thus, there is a need to set both minimal and 

maximal exposure limits.  This could be conceptualized as two dose-response curves or 

relationships:  one for the probability of healthy function (low-nutrient intake D-R) and 

another for the probability of adverse response (high-nutrient intake D-R).   

 

Often data concerning dose-response relationships for nutrient substances are limited or 

less than ideal.  Since DRI values are needed to help guide policy makers and others in 

real time, awaiting a complete data set before articulating some type of guidance is often 

not an option or at best leaves a void into which others may input less scientifically-based 

values.  Therefore, there is considerable interest in ensuring that DRI study panels make 

the best use of available data and as appropriate incorporate cutting-edge strategies and 

methodologies for approximating dose-response relationships when data are less than 

ideal.     

 

Risk assessment for on non-nutrient substances, such as environmental contaminants, 

pesticides and food additives, have been addressing dose-response relationships for many 

years.  These fields have actively worked to consider strategies for approximating or 

estimating dose-response relationships with limited data and have led the way in new 

techniques and approaches.  Moreover, fields such as statistics, computer design and data 

analysis have focused on data enhancement strategies such as meta-analysis for 

combining results across multiple studies.  The expertise and experiences available from 

these fields of study are likely to have direct application to the enhancement of the DRI 

development process. 
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This paper summarizes an informal 4-hour ‘brainstorming’ session held to highlight the 

thoughts of toxicologists, biostatisticians/quantitative risk assessors and related scientists 

concerning strategies they use in the face of limited dose-response data that may be 

useful to the process of DRI development for nutrient substances.  The informal session 

was organized by Institute of Medicine (IOM) staff; seven persons participated (see 

Appendix A).  This summary of the brainstorming discussion will be used as a 

background document for an IOM workshop, “The Development of DRIs:  Lessons 

Learned and New Challenges,” to be held in September 2007 

(www.iom.edu/driworkshop2007). 

 

 

GENERAL CONSIDERATIONS HIGHLIGHTED BY PARTICIPANTS 

 

● After reviewing the nature of nutrient substances, the participants noted that the study 

of dose-response relationships gives rise to basically the same questions regardless of 

whether the focus is endpoints germane to deficiency and reduction of risk for chronic 

disease or, alternatively, endpoints relative to toxic-type effects.  They suggested that the 

steps of scientific analysis (evaluation and weighing of data, addressing data 

uncertainties, extrapolation to unstudied groups) would, generally, be equally applicable 

to either set of dose-response situations – determining levels of adequacy or determining 

levels of excess. 

 

● Given the premise of limited data, it seemed that the term “modeling” dose-response 

was not entirely appropriate in that modeling generally requires more data than is implied 

by the “limited data” encountered by DRI study panels.  Rather, the preferred term for 

this purpose would be “approximating” dose response.  The participants suggested that 

approximating dose-response relationships as commonly practiced in the face of limited 

data is dependent upon the use of scientific judgment and that the goal is to ensure that 

this scientific judgment is (i) fully informed, (ii) well-reasoned and transparent, and 

(iii) based on agreed-upon general principles to the extent possible.  Scientific 

judgment is considered an extremely useful approach for developing good estimates of 

dose-response relationships given limited data with the proviso that it is recognized to 

rest on assumptions and that these assumptions must be specified using a rigorous 

process.    

 

● Participants underscored the importance of working from a “mode of action” 

framework when exercising the needed scientific judgment associated with 

approximating dose-response relationships.  Consistent with a just-released report from 

the National Research Council of the National Academy of Sciences’ (NAS)
1
 – a report 

that the brainstorming participants then used to further outline approaches and strategies 

for approximating dose-response relationships – participants pointed out that the 

understanding of mode of action involves studying the mechanistic pathways by which 

toxic effects are induced, including the key molecular and other biologic targets in the 

pathways.  Some indicated that the cutting-edge aspects of non-nutrient fields of study 

                                                 
1
  National Research Council. 2007. Toxicity Testing in the Twenty-first Century: A Vision and a Strategy. 

Washington, DC: The National Academies Press (prepublication copy, June 12, 2007). 
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may include a shift away from the traditional toxicity testing that focuses on 

demonstrating adverse effects in experimental animals toward a deeper understanding of 

biological perturbations in key pathways that lead to the adverse outcome 

 

● Nonetheless, participants emphasized that the field of nutrition would initially benefit 

from increased emphasis on animal models.  At a minimum, nutrition might benefit from 

an incorporation of animal studies in addition to human studies when developing DRIs.  

Participants noted that in non-nutrient fields the development of animal models to address 

limited data is advancing rapidly, is reasonably well supported and have proven 

extremely useful in lieu of human data.  They noted that while nutrition science has 

historically rested on animal and related in vitro studies, use of these approaches has 

slowed noticeably in the last 15-20 years.  Participants strongly recommended increased 

development of animal models for the study and articulation of nutrient relationships, 

and specifically for those related to dose response.  It was noted that the use of human 

data, including observational studies if clinical data are limited, is desirable but that an 

increased emphasis on animal models and related studies can be highly beneficial to the 

process. It was recognized that much of the needed data for dose-response relationships 

for nutrient substances are not easily obtained via human studies given ethical 

considerations.  In particular, it was noted that animal data may be the only available data 

for conducting assessments.  This further highlighted the critical need to focus on other 

approaches.   

 

 

POTENTIALLY RELEVANT METHDOLOGIES OUTLINED BY PARTICIPANTS 

 

Some participants highlighted the recent report from NAS entitled “Toxicity Testing in 

the 21
st
 Century:  A Vision and a Strategy,” specifically Chapter 4 (see Footnote 1 

above) as a possible source of methodologies that might be examined in more depth for 

their relevance to nutrient substances and DRI development in general.  The report was in 

prepublication format at the time of the brainstorming session.  It was recognized that 

while some of the methods may have relevance some, such as the in vitro methods known 

as high-throughput screening, are likely to be of less value but are included for the 

purposes of comprehensiveness.  A description of methodologies taken from the text of 

the report is in Appendix B, along with the reference listing for Chapter 4 of the report. 

Many of the references were considered useful for future considerations for 

approximating dose-response relationships for nutrient substances, so the entire reference 

section has been included. 

 

 

 

NEXT STEPS 

 

Participants acknowledged that limited data for dose-response relationships are not 

unique to the field of nutrition.  However, it would seem that non-nutrient fields of study 

have been relatively active in targeting non-human methodologies for addressing dose-

response relationships.  At the same time efforts are being made in these fields to put in 
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place recognized principles to make use of scientific judgment to outline dose-response 

relationships so that public health can be protected even in the face of limited data. 

 

It is therefore logical to first make the standard recommendation that seeking more data is 

desirable relevant to nutrient substance dose-response relationships.  But, participants 

pointed out the wisdom of specifically directing efforts toward work relative to animal 

and in vitro methodologies as an important path to the future for nutrient does-response 

relationships. 

 

Just as importantly, it was recognized that an immediate need is the development of a 

general set of principles that can be used by persons working to articulate dose-response 

relationships for nutrients with limited and for whom scientific judgment must come into 

play.  Such principles would be fleshed out over time, but critical first steps can be taken 

now to outline practical and accountable general strategies germane to nutrition and DRI 

development.  Participants further acknowledged the point made in a 2005 joint report
2
 

from the Food and Agriculture Organization and the World Health Organization which 

highlighted the value of combining nutrition science with other disciplines such as 

toxicology so as to enhance scientific decision-making in the field of nutrition – and that 

this is best accomplished when a meaningful dialogue among scientists with different 

expertise is allowed to take place.  To that end, participants suggested that a useful next 

step would be a meeting of scientific experts from nutrition and toxicology and other 

related non-nutrient fields of study.  The goal would be to specifically focus on relevant 

approximating methodologies for dose-response relationships for nutrient substances, 

taking into account the needs relevant to determining levels of adequacy as well as levels 

of excess.  The tasks of such a meeting would be first to begin the process of developing 

general guidelines for approximating dose-response under various relevant scenarios 

encountered during DRI development and then to focus specifically on methodologies 

such as those described above with the goal of considering their current relevance to 

nutrition dose-response approximation and in turn identifying research needs.  

 

                                                 
2
 Food and Agriculture Organization and World Health Organization, 2005.  A Model for Establishing 

Upper Levels of Intake for Nutrients and Related Substances.  Geneva, World Health Organization. 

http://www.who.int/ipcs/methods/en/.   
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Appendix B 

 

Methodologies That Could be Studied for Relevance to Nutrient Substances 

 

Participants highlighted the following as potentially useful in providing information 

needed for the scientific judgment considerations relevant to approximating dose-

response relationships for nutrient substances.  Participants stressed that not all the 

methodologies may be equally applicable to nutrition and substantial further 

consideration is needed.  The descriptions given are from a recent report from NAS 

entitled “Toxicity Testing in the 21
st
 Century: A Vision and a Strategy,” specifically 

Chapter 4
3
.   

 

 

Tools and Technologies for Improved Understanding 

 

♦ Mapping Pathways 

 

 The evaluation of perturbations in relevant biological pathways is an important 

component of newer technologies.  “Many tools and technologies are available that can 

aid in the identification of biologic signaling pathways and the development of assays to 

evaluate their function. Recent advances in cellular and molecular biology, -omics 

technologies, and computational analysis have contributed considerably to the 

understanding of biologic signaling processes (Daston 1997; Ekins et al. 

2005). Within the last 15 years, multiple cellular response pathways have been evaluated 

in increasing depth as is evidenced by the progress in the basic knowledge of cellular and 

molecular biology (Fernandis and Wenk 2007; Lewin et al. 2007). Moreover, systems 

biology constitutes a powerful approach to describing and understanding the fundamental 

mechanisms by which biologic systems operate. Specifically, systems biology focuses on 

the elucidation of biologic components and how they work together to give rise to 

biologic function. A systems approach can be used to describe the fundamental biologic 

events involved in toxicity pathways and to provide evolving biologic modeling tools that 

describe cellular circuits and their perturbations by environmental agents (Andersen et al. 

2005a). A longer-term goal of systems biology is to create mathematical models of 

biologic circuits that predict the behavior of cells in response to environmental agents 

qualitatively and quantitatively (Lander and Weinberg 2000). Progress in that regard is 

being made in developmental biology (Cummings and Kavlock 2005; Slikker et al. 

2005).”  

 The brief listing that follows outlines tools and technologies that will most likely 

be used to elucidate the critical pathways and to develop assays to evaluate them.  Many 

aspects could be relevant to nutrient substance dose-response relationships.  

                                                 
3
 National Research Council. 2007. Toxicity Testing in the Twenty-first Century: A Vision and a Strategy. 

Washington, DC: The National Academies Press (prepublication copy, June 12, 2007). 
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♦  In Vitro Tests 

 

 In vitro assays will make up the bulk of the toxicity tests for those fields focused 

on toxicity.  These assays may have relevance for nutrient substances as well.  “In vitro 

tests are currently used in traditional toxicity testing and indicate the success of 

developing and using in vitro assays (Goldberg and Hartung 2005). In vitro tests include 

the 3T3 neural red uptake phototoxicity assay (Spielman and Liebsch 2001), cytotoxicity 

assays (O’Brien and Haskins 2007), skin-corrosivity tests, and assays measuring vascular 

injury using human endothelial cells (Schleger et al. 2004). Many tests have been 

validated by the European Centre for the Validation of Alternative Methods. The 

committee
4
 notes that the current in vitro tests originated as alternatives to or 

replacements of other toxicity tests. In the committee’s vision, in vitro assays will 

evaluate biologically significant perturbations in toxicity pathways and thus are not 

intended to serve as direct replacements of existing toxicity tests. 

 The committee envisions the use of human cell lines for the in vitro assays. Cell 

lines have been used for a long time in experimental toxicology and pharmacology. 

Human cell lines are readily available from tissue-culture banks and laboratories and are 

particularly attractive because they offer the possibility of working with a system that 

maintains several phenotypic and genotypic characteristics of the human cells in vivo 

(Suemori 2006). Differentiated functions, functional markers, and metabolic capacities 

may be altered or preserved in cell lines, depending on culture conditions, thereby 

allowing testing of a wide array of agents in different experimental settings. Other 

possibilities include using animal cells that are transfected to express human genes and 

proteins. For example, various cell lines—such as V79, CHO, COS-7, NIH3T3, and 

HEPG2—have been transfected with complementary DNA (cDNA, DNA synthesized 

from mature mRNA) coding for human enzymes and used in mutagenesis and drug-

metabolism studies (Potier et al. 1995). Individual enzymes have also been stably 

expressed to identify the major human isoenzymes, such as cytochromes P-450 and UDP-

glucuronosyltransferases, responsible for the metabolism of potential therapeutic and 

environmental agents. The metabolic in vitro screens with human enzymes are usually 

conducted as a prelude to clinical studies. 

 A major limitation of using human cell lines is the difficulty of extrapolating data 

from the simple biologic system of single cells to the complex interactions in whole 

animals. Questions have also been raised concerning the stability of cell lines over time, 

the reproducibility of responses over time, and the ability of cell lines to account for 

genetic diversity of the human population. Nonetheless, cell lines have been used as key 

tools in the initial screening and evaluation of toxic agents and the characterization of 

properties of cancer cells (Suzuki et al. 2005) and in gene profiling with microarrays 

(Wang et al. 2006). The high-throughput methods now becoming more common will 

allow the expansion of the methods to larger numbers of end points, wider dose ranges, 

and mixtures of agents (Inglese 2002; Inglese et al. 2006).” 

                                                 
4
 The term “committee” here and elsewhere in this section refers to The Committee on Toxicity and 

Assessment of Environmental Agents, National Research Council; this committee is the author of the 

report.  
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♦  High-Throughput Methods 

 

 High-throughput methods can allow economical screening of large numbers of 

substances in a short period.  Its direct application to nutrients needs to be explored.  

“The pharmaceutical industry provides an example of the successful use of high-

throughput methods. Optimizing drug-candidate screening is essential for timely and 

cost-effective development of new pharmaceuticals. Without effective screening 

methods, poor drug candidates might not be identified until the preclinical or clinical 

phase of the drug-development process, and this could lead to high costs and low 

productivity for the pharmaceutical industry (Lee and Dordick 2006). Pharmaceutical 

companies have turned to high-throughput screening, which allows automated 

simultaneous testing of thousands of chemical compounds under conditions that model 

key biologic mechanisms (Fischer 2005). Such technologies as hybridization, 

microarrays, real-time polymerase chain reaction, and large-scale sequencing are some of 

the high-throughput methods that have been developed (Waring and Ulrich 2000). High-

throughput assays are useful for predicting several important characteristics related to the 

absorption, distribution, metabolism, excretion, and toxicity of a compound (Gombar et 

al. 2003). They can predict the interaction of a compound with enzymes, the metabolic 

degradation of the compound, the enzymes involved in its biotransformation, and the 

metabolites formed (Masimirembwa et al. 2001). That information is integral for 

selecting compounds to advance to the next phase of drug development, especially when 

many compounds may have comparable pharmacologic properties but differing toxicity 

profiles (Pallardy et al.1998). High-throughput assays are also useful for rapid and 

accurate detection of genetic polymorphisms that could dramatically influence individual 

differences in drug response (Shi et al. 1999).” 

 

♦  Microarrays 

 

 “Microarray technologies have allowed the development of the field of 

toxicogenomics, which evaluates changes in genetic response to environmental agents or 

toxicants. These technologies permit genomewide assessments of changes in gene 

expression associated with exposure to environmental agents. The identification of 

responding genes can provide valuable information on cellular response and some 

information on toxicity pathways that might be affected by environmental agents. Some 

of the tools and technologies are described below. 

 Microarrays are high-throughput analytic devices that provide comprehensive 

genome-scale expression analysis by simultaneously monitoring quantitative 

transcription of thousands of genes in parallel (Hoheisel 2006). The Affymetrix 

GeneChip Human Genome U133 Plus 2.0 Array provides comprehensive analysis of 

genomewide expression of the entire transcribed human genome on a single 

microarray (Affymetrix Corporation 2007). Whole-genome arrays are also available for 

the rat and mouse. The use of the rat arrays will probably increase as the relationships 

between specific genes and markers on the arrays become better understood. 

 Protein microarrays potentially offer the ability to evaluate all expressed proteins 

in cells or tissues. Protein-expression profiling would allow some understanding of the 

relationship between transcription (the suite of mRNAs in the cell) and the translational 
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readout of the transcripts (the proteins). Protein microarrays have diverse applications in 

biomedical research, including profiling of disease markers and understanding of 

molecular pathways, protein modifications, and protein activities (Zangar et al. 2005). 

However, whole-cell or tissue profiling of expressed proteins is still in the developmental 

stage. These techniques remain expensive, and the technology is in flux. 

 Differential gene-expression experiments use comparative microarray analysis to 

identify genes that are upregulated or downregulated in response to experimental 

conditions. The large-scale investigation of differential gene expression attaches 

functional activity to structural genomics. Wholegenome- expression experiments 

involve hundreds of experimental conditions in which patterns of global gene expression 

are used to classify disease specimens and discover gene functions and toxicogenomic 

targets (Peeters and Van der Spek 2005). Gene-expression profiling will have a role in 

identifying toxicity pathways in whole-animal studies but is not expected to be the staple 

technology for identifying and mapping the pathways.” 

 

♦ Computational Biology 

 

 “Computational biology uses computer techniques and mathematical modeling to 

understand biologic processes. It is a powerful tool to cope with the ever-increasing 

quantity and quality of biologic information on genomics, proteomics, gene expression, 

gene varieties, genotyping techniques, and protein and cell arrays (Kriete and Eils 2006). 

Computational tools are used in data analysis, data mining, data integration, network 

analysis, and multiscale modeling (Kitano 2005). Computational biology is particularly 

useful for systems biology in understanding structural, regulatory, and kinetic models 

(Barabasi and Oltvai 2004); in modeling signal transduction (Eungdamrong and Iyengar 

2004); and in analyzing genome information and its structural and functional properties 

(Snitkin et al. 2006). Furthermore, computational biology is used to predict toxic effects 

of chemical substances (Simon- Hettich et al. 2006), to understand the toxicokinetics and 

toxicodynamics of xenobiotics (Ekins 2006), to determine gene-expression profiling of 

cancer cells (Katoh and Katoh 2006), to help in the development of genomic biomarkers 

(Ginsburg and Haga 2006), and to design virtual experiments to replace or reduce animal 

testing (Vedani 1999). In drug design and discovery, novel computational technologies 

help to create chemical libraries of structural motifs relevant to target proteins and their 

small molecular ligands (Balakin et al. 2006; O’Donoghue et al. 2006). 

 Cellular signaling circuits handle an enormous variety of functions. Apart from 

replication and other functions of individual cells, signaling circuits must implement the 

complex logic of development and function of multicellular organisms. Computer models 

are helpful in understanding that complexity (Bhalla et al. 2002). Recent studies have 

extended such models to include electrical, mechanical, and spatial details of signaling 

(Bhalla 2004a,b). The mitogen-activated protein kinase (MAPK) pathway is one of the 

most important and extensively studied signaling pathways; it governs growth, 

proliferation, differentiation, and survival of cells. A wide variety of mathematical 

models of the MAPK pathway have led to novel insights and predictions as to how it 

functions (Orton et al. 2005; Santos et al. 2007). 

 Predictive computational models derived from experimental studies have been 

developed to describe receptor-mediated cell communication and intracellular signal 
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transduction (Sachs et al. 2005). Physicochemical models attempt to describe 

biomolecular transformations, such as covalent modification and intermolecular 

association, with physicochemical equations. The models make specific predictions and 

work mostly with pathways that are better understood. They can be viewed as translations 

of familiar pathway maps into mathematical forms (Aldridge et al. 2006). Integrated 

mechanistic and data-driven modeling for multivariate analysis of signaling pathways is a 

novel approach to understanding multivariate dependence among molecules in complex 

networks and potentially can be used to identify combinatorial targets for therapeutic 

interventions and toxicity-pathway targets that lead to adverse responses (Hua et al. 

2006).” 

 

Tools and Technologies for Dose-Response and Extrapolation Modeling 

 

♦ Physiologically Based Pharmacokinetic Models 

 

 “Assessing the risk associated with human non-nutrient exposure has traditionally 

relied on the extrapolation of data from animal models to humans, from one route of 

exposure to another, and from high doses to low doses. “Such extrapolation attempts to 

relate the extent of external exposure to a toxicant to the internal dose in the target tissue 

of interest. However, differences in biotransformation and other pharmacokinetic 

processes can introduce error and uncertainty into the extrapolation of toxicity from 

animals to humans (Kedderis and Lipscomb 2001).  

 PBPK models provide a physiologic basis for extrapolating between species and 

routes of exposure and thus allow estimation of the active form of a toxicant that reaches 

the target tissue after absorption, distribution, and biotransformation (Watanabe et al. 

1988). However, PBPK results can differ significantly in the hands of different modelers 

(Hattis et al. 1990), and improved modeling approaches for parameter selection and 

uncertainty analysis are under discussion. PBPK models might also be useful for 

estimating the effect of exposure at different life stages, such as pregnancy, critical 

periods of development, and childhood growth (Barton 2005). Interindividual differences 

can be incorporated into PBPK models by integrating quantitative information from in 

vitro biotransformation studies (Bois et al. 1995; Kedderis and Lipscomb 2001). 

 The more pervasive use of PBPK approaches in the new strategy for toxicity 

testing will be in basing dosimetry extrapolations on estimates of partitioning, 

metabolism, and interactions among chemicals derived from in vitro measurements or 

perhaps even from SAR or QSAR techniques. Those extrapolations will require some 

level of validation that might require data from kinetic studies in volunteers or from 

biomonitoring studies in human populations. In the committee’s vision for toxicity 

testing, the development of PBPK models from SAR predictions of partitioning and 

metabolism would decrease animal use, and continued improvements in in vitro to in 

vivo extrapolations of kinetics will support the translation from test-tube studies of 

perturbations to predictions.” 
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♦ Dose-Response Models of Pathways 

 

 “Dose-response modeling of toxicity pathways involves the integration of 

mechanistic and dosimetric information about the toxicity of a chemical into descriptive 

mathematical terms to provide a quantitative model that allows dose and interspecies 

extrapolation (Conolly 2002). New techniques in molecular biology, such as functional 

genomics, will play a key role in the development of such models because they provide 

more detailed information about the organization of toxicity pathways and the dose 

response relationships of perturbations of toxicity pathways by environmental agents. 

Dose-response models have been developed for cell-signaling pathways and used in risk 

assessment (Andersen et al. 2002). They have found important applications in studying 

chemical carcinogenesis (Park and Stayner 2006). In particular, models of cancer 

formation have been developed to describe the induction of squamous-cell carcinomas of 

the nasal passage in rats exposed to formaldehyde by inhalation, taking into account both 

tissue dosimetry and the nonlinear effects of cellular proliferation and formation of 

DNAprotein cross-links (Slikker et al. 2004a, 2004b; Conolly et al. 2004). However, 

alternative implementations of the formaldehyde model gave substantially different 

results (Subramaniam et al. 2006). Emerging developments in systems biology allow 

modeling of cellular and molecular signaling networks affected by chemical exposures 

and thereby produce an integrated modeling approach capable of predicting dose-

response relationships of pathway perturbations by developmental and reproductive 

toxicants (Andersen et al. 2005b). 

 In the next decades, the dose-response modeling tools for perturbations should 

progress relatively rapidly to guide low-dose extrapolations of initial interactions of toxic 

compounds with biologic systems. The quantitative lineage of early perturbations with 

apical responses is likely to develop more slowly. For the foreseeable future, the 

continued refinement of biologic models of signaling circuitry should guide the 

extrapolation approaches necessary for conducting risk assessment with the toxicity-

pathway tests as the cornerstone of toxicity-testing methods.” 



 13

 

 

References from Chapter 4 of NAS Report
5
 

 

Affymetrix Corporation. 2007. GeneChip Arrays. Affymetrix Corporation. [online]. 

Available: 

http://www.affymetrix.com/products/arrays/specific/hgu133plus.affx [accessed 

March 27, 2007]. 

Akutsu, T., S. Kuhara, O. Maruyama, and S. Miyano. 1998. A system for identifying 

genetic networks from geneexpression patterns produced by gene disruption and 

overexpressions. Genome Inform. Ser. WorkshopGenome Inform. 9:151-160. 

Aldridge, B.B., J.M. Burke, D.A. Lauffenburger, and P.K. Sorger. 2006. Physicochemical 

modeling of cell signaling pathways. Nat. Cell Biol. 8(11):1195-1203. 

Andersen, M.E., R.S. Yang, C.T. French, L.S. Chubb, and J.E. Dennison. 2002. 

Molecular circuits, biological switches, and nonlinear dose-response relationships. 

Environ. Health Perspect. 110(Suppl. 6):971-978. 

Andersen, M.E., J.E. Dennison, R.S. Thomas, and R.B. Conolly. 2005a. New directions 

in incidence dose-response modeling. Trends Biotechnol. 23(3):122-127. 

Andersen, M.E., R.S. Thomas, K.W. Gaido, and R.B. Conolly. 2005b. Dose-response 

modeling in reproductive toxicology in the systems biology era. Reprod. Toxicol. 

19(3):327-337. 

Anderson, S. 2002. The state of the world's pharmacy: A portrait of the pharmacy 

profession. J. Interprof. Care.16(4):391-404. 

Balakin, K.V., A.V. Kozintsev, A.S. Kiselyov, and N.P. Savchuk. 2006. Rational design 

approaches to chemical libraries for hit identification. Curr. Drug Discov. 

Technol. 3(1):49-65. 

Barabasi, A.L., and Z.N. Oltvai. 2004. Network biology: Understanding the cell’s 

functional organization. Nat. Rev.Genet. 5(2):101-113. 

Barton, H.A. 2005. Computational pharmacokinetics during developmental windows of 

susceptibility. J. Toxicol.Environ. Health A 68(11-12):889-900. 

Benigni, R. 2004. Chemical structure of mutagens and carcinogens and the relationship 

with biological activity. J.Exp. Clin. Cancer Res. 23(1):5-8. 

Benigni, R., and C. Bossa. 2006. Structure-activity models of chemical carcinogens: State 

of the art, and new directions. Ann. Ist Super Sanita. 42(2):118-126. 

Berns, K., E.M. Hijmans, J. Mullenders, T.R. Brummelkamp, A. Velds, M. Heimerikx, 

R.M. Kerkhoven, M.Madiredjo, W. Nijkamp, B. Weigelt, R. Agami, W. Ge, G. 

Cavet, P.S. Linsley, R.L. Beijersbergen, and R. Bernards. 2004. A large-scale 

RNAi screen in human cells identifies new components of the p53 pathway. 

Nature 428(6981):431-437. 

Bhalla, U.S. 2004a. Signaling in small subcellular volumes. I. Stochastic and diffusion 

effects on individual pathways. Biophys J. 87(2):733-744. 

Bhalla, U.S. 2004b. Signaling in small subcellular volumes. II. Stochastic and diffusion 

effects on synaptic network properties. Biophys. J. 87(2):745-753. 

                                                 
5
 National Research Council. 2007. Toxicity Testing in the Twenty-first Century: A Vision and a Strategy. 

Washington, DC: The National Academies Press (prepublication copy, June 12, 2007).  



 14

Bhalla, U.S., P.T. Ram, and R. Iyengar. 2002. MAP kinase phosphatase as a locus of 

flexibility in a mitogen activated protein kinase signaling network. Science 

297(5583):1018-1023. 

 Bodor, N. 1999. Recent advances in retrometabolic design approaches. J. Control.  

 Release 62(1-2):209-222. 

Bois, F.Y., G. Krowech, and L. Zeise. 1995. Modeling human interindividual variability 

 in metabolism and risk: The example of 4-aminobiphenyl. Risk Anal. 15(2):205-

 213. 

Brent, R. 2000. Genomic biology. Cell 100(1):169-183. 

Bugrim, A., T. Nikolskaya, and Y. Nikolsky. 2004. Early prediction of drug metabolism 

 and toxicity: Systems biology approach and modeling. Drug Discov. Today 

 9(3):127-135. 

Chanda, S.K., S. White, A.P. Orth, R. Reisdorph, L. Miraglia, R.S. Thomas, P. DeJesus, 

D.E. Mason, Q. Huang, R.Vega, D.H. Yu, C.G. Nelson, B.M. Smith, R. Terry, 

A.S. Linford, Y. Yu, G.W. Chirn, C. Song, M.A. Labow, D. Cohen, F.J. King, 

E.C. Peters, P.G. Schultz, P.K. Vogt, J.B. Hogenesch, and J.S. Caldwell. 2003. 

Genome-scale functional profiling of the mammalian AP-1signaling pathway. 

Proc. Natl. Acad. Sci. U.S.A. 100(21):12153-12158. 

Congiu, A., D. Pozzi, C. Esposito, C. Castellano, and G. Mossa. 2004. Correlation 

between structure and transfection efficiency: A study of DC-Chol--DOPE/DNA 

complexes. Colloids Surf. B Biointerfaces. 36(1):43-48. 

Conolly, R.B. 2002. The use of biologically based modeling in risk assessment. 

 Toxicology 27:181-182; 275-279. 

Conolly, R.B., J.S. Kimbell, D. Janszen, P.M. Schlosser, D. Kalisak, J. Preston, and F.J. 

Miller. 2004. Human respiratory tract cancer risks of inhaled formaldehyde: 

Dose-response predictions derived from biologically-motivated computational 

modeling of a combined rodent and human dataset. Toxicol. Sci. 82(1):279-296. 

Cronin, M.T. 2002. The current status and future applicability of quantitative structure-

activity relationships (QSARs) in predicting toxicity. Altern. Lab. Anim. 

30(Suppl. 2):81-84. 

Cummings, A., and R. Kavlock. 2005. A systems biology approach to developmental 

 toxicology. Reprod. Toxicol.19(3):281-290. 

Daston, G.P. 1997. Advances in understanding mechanisms of toxicity and implications 

 for risk assessment. Reprod. Toxicol. 11(2-3):389-396. 

Ekins, S. 2006. Systems-ADME/Tox: Resources and network applications. J. Pharmacol. 

 Toxicol. Methods 53(1):38-66. 

Ekins, S., Y. Nikolsky, and T. Nikolskaya. 2005. Techniques: Applications of systems 

 biology to absorption, distribution, metabolism, excretion and toxicity. Trends 

 Pharmacol. Sci. 26(4):202-209. 

Eungdamrong, N.J., and R. Iyengar. 2004. Computational approaches for modeling 

 regulatory cellular networks.Trends Cell Biol. 14(12):661-669. 

Feher, M., E. Sourial, and J.M. Schmidt. 2000. A simple model for the prediction of 

 blood-brain partitioning. Int. J. Pharm. 201(2):239-247. 

Fernandis, A.Z, and M.R. Wenk. 2007. Membrane lipids as signaling molecules. Curr. 

 Opin. Lipidol. 18(2):121-128. 



 15

Fischer, H.P. 2005. Towards quantitative biology: Integration of biological information to 

 elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev. 

 11:1-68. 

Ginsburg, G.S., and S.B. Haga. 2006. Translating genomic biomarkers into clinically 

 useful diagnostics. Expert Rev. Mol. Diagn. 6(2):179-191. 

Goldberg, A.M., and T. Hartung. 2006. Protecting more than animals. Sci Am. 

 294(1):84-91. 

Gombar, V.K., I.S. Silver, and Z. Zhao. 2003. Role of ADME characteristics in drug 

 discovery and their in silico evaluation: In silico screening of chemicals for their 

 metabolic stability. Curr. Top. Med. Chem. 3(11):1205-1225. 

Hammond, S.M. 2005. Dicing and slicing: The core machinery of the RNA interference 

 pathway. FEBS Lett. 579(26):5822-5829. 

Hannon, G.J. 2002. RNA interference. Nature 418(6894):244-251. 

Hattis, D., P. White, L. Marmorstein, and P. Koch. 1990. Uncertainties in 

 pharmacokinetic modeling for perchloroethylene. I. Comparison of model 

 structure, parameters, and predictions for low-dose metabolism 

 rates for models derived by different authors. Risk Anal. 10(3):449-458. 

Hoheisel, J.D. 2006. Microarray technology: Beyond transcript profiling and genotype 

 analysis. Nat. Rev. Genet. 7(3):200-210. 

Hua, F., S. Hautaniemi, R. Yokoo, and D.A. Lauffenburger. 2006. Integrated mechanistic 

 and data driven modeling for multivariate analysis of signaling pathways. J. R. 

 Soc. Interface. 3(9):515-526. 

Huang, Q., A. Raya, P. DeJesus, S.H. Chao, K.C. Quon, J.S. Caldwell, S.K. Chanda, J.C. 

 Izpisua-Belmonte, and P.G. Schultz. 2004. Identification of p53 regulators by 

 genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 101(10):3456-3461. 

Inglese, J. 2002. Expanding the HTS paradigm. Drug Discov. Today 7(Suppl. 18):S105-

 S106. 

Inglese, J., D.S. Auld, A. Jadhav, R.L. Johnson, A. Simeonov, A. Yasgar, W. Zheng, and 

 C.P. Austin. 2006.Quantitative high-throughput screening: A titration-based 

 approach that efficiently identifies biological activities in large chemical libraries. 

 Proc. Natl. Acad. Sci. U.S.A. 103(31):11473-11478. 

Katoh, M., and M. Katoh. 2006. Bioinformatics for cancer management in the post-

 genome era. Technol. Cancer Res. Treat. 5(2):169-175. 

Kedderis, G.L, and J.C. Lipscomb. 2001. Application of in vitro biotransformation data 

 and pharmacokinetic modeling to risk assessment. Toxicol. Ind. Health 17(5-

 10):315-321. 

Kitano, H. 2005. International alliance for quantitative modeling in systems biology. Mol. 

 Syst. Biol.1(1):2005.0007 [online]. Available: 

 http://www.nature.com/msb/journal/v1/n1/pdf/msb4100011.pdf 

 [accessed March 27, 2007] 

Kriete, A., and R. Eils. 2006. Introducing computational systems biology. Pp. 1-14 in: 

 Computational System Biology. Boston: Elsevier Academic Press. 

Lander, E.S., and R.A. Weinberg. 2000. Genomics: Journey to the center of biology. 

 Science 287(5459):1777-1782. 

Lee, M.Y., and J.S. Dordick. 2006. High-throughput human metabolism and toxicity 

 analysis. Curr. Opin. Biotechnol. 17(6):619-627. 



 16

Lewin, B., L. Cassimeris, V.R. Lingappa, and G. Plopper. 2007. Cells. Sudbury, MA: 

 Jones and Bartlett Pub. 

Lum, L., S. Yao, B. Mozer, A. Rovescalli, D. Von Kessler, M. Nirenberg, and P.A. 

 Beachy. 2003. Identification of Hedgehog pathway components by RNAi in 

 Drosophila cultured cells. Science 299(5615):2039-2045. 

Masimirembwa, C.M., R. Thompson, and T.B. Andersson. 2001. In vitro high throughput 

 screening of compounds for favorable metabolic properties in drug discovery. 

 Comb. Chem. High Throughput Screen. 4(3):245-263. 

McKinney, J.D., A. Richard, C. Waller, M.C. Newman, and F. Gerberick. 2000. The 

 practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 

 56(1):8-17. 

Meister, G., and T. Tuschl. 2004. Mechanisms of gene slicing by double-stranded RNA. 

 Nature 431(7006):343-349. 

Mello, C.C., and D. Conte, Jr. 2004. Revealing the world of RNA interference. Nature 

 431(7006):338-342. 

Michiels, F., H. van Es, L. van Rompaey, P. Merchiers, B. Francken, K. Pittois, J. van der 

Schueren, R. Brys, J. Vandersmissen, F. Beirinckx, S. Herman, K. Dokic, H. 

Klaassen, E. Narinx, A. Hagers, W. Laenen, I. Piest, H. Pavliska, Y. Rombout, E. 

Langemeijer, L. Ma, C. Schipper, M.D. Raeymaeker, S. Schweicher, M. Jans, K. 

van Beeck, I.R. Tsang, O. van de Stolpe, P. Tomme, G.J. Arts, and J. Donker. 

2002. Arrayed adenoviral expression libraries for functional screening. Nat. 

Biotechnol. 20(11):1154-1157. 

O’Brien, P., and J.R. Haskins. 2007. In vitro cytotoxicity assessment. Methods Mol. Biol. 

 356: 415-425. 

O’Donoghue, S.I., R.B. Russell, and A. Schafferhans. 2006. Three-dimensional structures 

 in target drug discovery and validation. Pp. 285-308 in In Silico Technologies in  

 Drug Target Identification and Validation, 6th Ed, D. Leon, and S. Markel, eds. 

 Boca Raton, FL: CRC Press. 

Orton, R.J., O.E. Sturm, V. Vyshemirsky, M. Calder, D.R. Gilbert, and W. Kolch. 2005. 

 Computational modeling of the receptor-tyrosine-kinase-activated MAPK 

 pathway. Biochem. J. 392(Pt. 2):249-261. 

Paans, A.M., and W. Vaalburg. 2000. Positron emission tomography in drug 

 development and drug evaluation. Curr. Pharm. Des. 6(16):1583-1591. 

Pallardy, M., S. Kerdine, and H. Lebrec. 1998. Testing strategies in immunotoxicology. 

 Toxicol. Lett. 102-103:257-260. 

Park, R.M., and L.T. Stayner. 2006. A search for thresholds and other nonlinearities in 

 the relationship between hexavalent chromium and lung cancer. Risk Anal. 

 26(1):79-88. 

Peeters, J.K., and P.J. Van der Spek. 2005. Growing applications and advancements in 

 microarray technology and analysis tools. Cell Biochem. Biophys. 43(1):149-166. 

Potier, M., B. Lakhdar, D. Merlet, and J. Cambar. 1995. Interest and limits of human 

 tissue and cell use in pharmacotoxicology. Cell Biol Toxicol. 11(3-4):133-139. 

Rehmann, S., and G.C. Jayson. 2005. Molecular imaging of antiangiogenic agents. 

 Oncologist. 10(2):92-103. 



 17

Sachs, K., O. Perez, D. Pe'er, D.A. Lauffenburger, and G.P. Nolan. 2005. Causal protein-

 signaling networks derived from multiparameter single-cell data. Science 

 308(5721):523-529. 

Santos, S.D., P.J. Verveer, and P.I. Bastiaens. 2007. Growth factor-induced MAPK 

 network topology shapes Erk response determining PC-12 cell fate. Nat. Cell 

 Biol. 9(3):324-330. 

Schleger, C., S.J. Platz, and U. Deschl. 2004. Development of an in vitro model for 

 vascular injury with human endothelial cells. ALTEX 21(Suppl. 3):12-19. 

Schultz, T.W., and J.R. Seward. 2000. Health effects related structure-toxicity 

 relationships: A paradigm for the first decade of the new millennium. Sci. Total 

 Environ. 249(1-3):73-84. 

Schultz, T.W., G.D. Sinks, and A.P. Bearden. 1998. QSAR in aquatic toxicology: A 

 mechanism of action approach comparing toxic potency to Pimephales promelas, 

 Tetrahymena pyriformis, and Vibrio fischeri. Pp. 51-110 in Comparative QSAR, 

 J. Devillers, ed. London: Taylor and Francis. 

Shi, M.M., M.R. Bleavins, and F.A. de la Iglesia. 1999. Technologies for detecting 

 genetic polymorphisms in pharmacogenomics. Mol. Diagn. 4(4):343-351. 

Simon-Hettich, B., A. Rothfuss, and T. Steger-Hartmann. 2006. Use of computer-assisted 

 prediction of toxic effects of chemical substances. Toxicology 224(1-2):156-162. 

Slikker, W., Jr., M.E. Andersen, M.S. Bogdanffy, J.S. Bus, S.D. Cohen, R.B. Conolly, 

 R.M. David, N.G. Doerrer, D.C. Dorman, D.W. Gaylor, D. Hattis, J.M. Rogers, 

 R.W. Setzer, J.A. Swenberg, and K. Wallace. 2004a. Dose-dependent transitions 

 in mechanisms of toxicity: Case studies. Toxicol. Appl. Pharmacol. 201(3):226- 

 294. 

Slikker, W., Jr., M.E. Andersen, M.S. Bogdanffy, J.S. Bus, S.D. Cohen, R.B. Conolly, 

 R.M. David, N.G. Doerrer, D.C. Dorman, D.W. Gaylor, D. Hattis, J.M. Rogers, 

 R. Woodrow Setzer, J.A. Swenberg, and K. Wallace. 2004b. Dose-dependent 

 transitions in mechanisms of toxicity. Toxicol. Appl. Pharmacol. 201(3):203-225. 

Slikker, W., Z. Xu, and C. Wang. 2005. Application of a systems biology approach to 

 developmental neurotoxicology. Reprod. Toxicol. 19(3):305-319. 

Snitkin, E.S., A.M. Gustafson, J. Mellor, J. Wu, and C. DeLisi. 2006. Comparative 

 assessment of performance and genome dependence among phylogenetic 

 profiling methods. BMC Bioinformatics 7:420. 

Soffers, A.E., M.G. Boersma, W.H. Vaes, J. Vervoort, B. Tyrakowska, J.L. Hermens, 

 I.M. Rietjens. 2001. Computer-modeling-based QSARs for analyzing 

 experimental data on biotransformation and toxicity. Toxicol. In Vitro 15(4-

 5):539-551. 

Spielmann, H., and M. Liebsch. 2001. Lessons learned from validation of in vitro toxicity 

 test: From failure to acceptance into regulatory practice. Toxicol. In Vitro 15(4-

 5):585-590. 

Subramaniam, R.P., K.S. Crump, C. Chen, P. White, C. Van Landingham, J.F. Fox, P. 

 Schlosser, T.R. Covington, D. DeVoney, J.J. Vandenberg, P. Preuss, and J. 

 Whalan. 2006. The role of mutagenicity in describing formaldehyde-induced 

 carcinogenicity: Possible inferences using the ciit model. Presented at the Society 

 of Risk Analysis Annual Meeting, Dec. 3-6, 2006, Baltimore, MD. 



 18

Suemori, H. 2006. Establishment and therapeutic use of human embryonic stem cell 

 lines. Hum. Cell. 19(2):65-70. 

Suzuki, N., A. Higashiguchi, Y. Hasegawa, H. Matsumoto, S. Oie, K. Orikawa, S. 

 Ezawa, N. Susumu, K. Miyashita, and D. Aoki. 2005. Loss of integrin alpha3 

 expression is associated with acquisition of invasive potential by ovarian clear 

 cell adenocarcinoma cells. Hum. Cell. 8(3):147-155. 

Tong, W., W.J. Welsh, L. Shi, H. Fang, and R. Perkins. 2003. Structure-activity 

 relationship approaches and applications. Environ. Toxicol. Chem. 22(8):1680-

 1695. 

van den Broek, L.A., E. Lazaro, Z. Zylicz, P.J. Fennis, F.A. Missler, P. Lelieveld, M. 

 Garzotto, D.J. Wagener, J.P. Ballesta, and H.C. Ottenheijm. 1989. Lipophilic 

 analogues of sparsomycin as strong inhibitors of protein synthesis and tumor 

 growth: A structure-activity relationship study. J. Med. Chem. 32(8):2002-2015. 

Van der Berg, M., L. Birnbaum, A.T. Bosveld, B. Brunstrom, P. Cook, M. Feeley, J.P. 

 Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. 

 van Leeuwen, A.K. Liem, C. Nolt, R.E. Peterson, 

 L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, 

 and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, 

 PCDFs for human and wildlife. Environ. Health Perspect. 106(12):775-792. 

Vedani, A. 1999. Replacing animal testing by virtual experiments: A challenge in 

 computational biology. Chimia 53(5):227-228. 

Walker, J.D., M. Enache, and J.C. Dearden. 2003a. Quantitative cationic-activity 

 relationships for predicting toxicity of metals. Environ. Toxicol. Chem. 

 22(8):1916-1935. 

Walker, J.D., J. Jaworska, M.H. Comber, T.W. Schultz, and J.C. Dearden. 2003b. 

 Guidelines for developing and using quantitative structure-activity relationships. 

 Environ. Toxicol. Chem. 22(8):1653-1665. 

Walker, J.D., ed. 2004. Quantitative Structure–Activity Relationships for Pollution 

 Prevention, Toxicity Screening, Risk Assessment, and Web Applications (QSAR 

 II). Pensacola, FL: SETAC Press. 

Wang, S.L., F.H. Lan, Y.P. Zhuang, H.Z. Li, L.H. Huang, D.Z. Zheng, J. Zeng, L.H. 

 Dong, Z.Y. Zhu, and J.L. Fu. 2006. Microarray analysis of gene-expression 

 profile in hepatocellular carcinoma cell, BEL-7402, with stable suppression of 

 hLRH-1 via a DNA vector-based RNA interference. Yi Chuan Xue Bao. 

 33(10):881-891. 

Waring, J.F., and R.G. Ulrich. 2000. The impact of genomics based technologies on drug 

 safety evaluation. Annu. Rev. Pharmacol. Toxicol. 40:335-352. 

Watanabe, P.G., A.M. Schumann, and R.H. Reitz. 1988. Toxicokinetics in the evaluation 

 of toxicity data. Regul.Toxicol. Pharmacol. 8(4):408-413. 

Zangar, R.C., S.M. Varnum, and N. Bollinger. 2005. Studying cellular processes and 

 detecting disease with protein microarrays. Drug Metab. Rev. 37(3):473-487. 


